Autocorrelation-based noise subtraction method with smoothing, overestimation, energy, and cepstral mean and variance normalization for noisy speech recognition

نویسنده

  • Gholamreza Farahani
چکیده

Autocorrelation domain is a proper domain for clean speech signal and noise separation. In this paper, a method is proposed to decrease effects of noise on the clean speech signal, autocorrelation-based noise subtraction (ANS). Then to deal with the error introduced by assumption that noise and clean speech signal are uncorrelated, two methods are proposed. Also to improve recognition rate of speech recognition system, overestimation parameter is used. Finally, with the addition of energy and cepstral mean and variance normalization to features of speech, recognition rate has improved considerably in comparison to standard features and other correlation-based methods. The proposed methods are tested on the Aurora 2 database. Between different proposed methods, autocorrelation-based noise subtraction method with smoothing, overestimation, energy, and cepstral mean and variance normalization (ANSSOEMV) method has a best recognition rate improvement in average than MFCC features which is 64.91% on the Aurora 2 database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

A New Data Driven Method for Robust Speech Recognition

The conventional view on the problem of robustness in speech recognition is that performance degradation in ASR systems is due to mismatch between training and test conditions. If problem of robustness in ASR systems were considered as a mismatch between the training and testing conditions the solution would be to find a way to reduce it. Common approaches are: Data-Driven methods such as speec...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Speech feature compensation based on pseudo stereo codebooks for robust speech recognition in additive noise environments

In this paper, we propose several compensation approaches to alleviate the effect of additive noise on speech features for speech recognition. These approaches are simple yet efficient noise reduction techniques that use online constructed pseudo stereo codebooks to evaluate the statistics in both clean and noisy environments. The process yields transforms for noisecorrupted speech features to ...

متن کامل

Robust Feature Extraction Using Autocorrelation Domain for Noisy Speech Recognition

Previous research has found autocorrelation domain as an appropriate domain for signal and noise separation. This paper discusses a simple and effective method for decreasing the effect of noise on the autocorrelation of the clean signal. This could later be used in extracting mel cepstral parameters for speech recognition. Two different methods are proposed to deal with the effect of error int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Audio, Speech and Music Processing

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017